# Frit fald med Picket Fence

### Formål

Formålet med denne øvelse er at bestemme en værdi for tyngdeaccelerationen g.

#### Udstyr

Denne øvelse kræver brug af sensoren *Vernier Go Direct Photogate* sammen med softwaren *Vernier Graphical Analysis Pro* (GA). Desuden skal benyttes *Picket Fence* fra Vernier – en smal plexiglasplade med nogle sorte uigennemsigtige sorte striber. Endelig skal der bruges et stativ til at spænde Photogaten op i.

#### Udførelse

Photogate-sensoren spændes op i et stativ, så Picket Fence kan slippes lodret ned gennem gabet i sensoren. Stil en kasse med noget blødt materiale i, så Picket Fence og gulv ikke tager skade ved faldet. Sensoren tilsluttes computeren via et USB-kabel.



Når man åbner Graphical Analysis (GA), mens sensoren er tilsluttet computeren, er der straks gjort klar til måling af hastigheden som funktion af tiden. Tryk på knappen *Opsaml* øverst og slip Picket Fence ned forbi fotocellerne i sensorens gab. Tryk på knappen *Stop* efter faldet er gennemført. I nederste venstre hjørne af interfacet er der tre knapper:



- a) Vælg knappen Zoom til alle data for at få spredt data godt ud.
- b) Vælg knappen *Grafværktøjer* og vælg punktet *Rediger grafindstillinger*. I den fremkomne boks markeres feltet *Punkter*, mens fluebenet ud for *Linjer* fjernes. Tryk på krydset i boksen for at lukke den. Derved får man data vist som datapunkter.

- c) Tryk igen på knappen *Grafværktøjer* og vælg punktet *Anvend Kurvetilpasning*. I boksen vælges muligheden *Lineær*. Afslut med *Anvend*.
- d) I det lineære fit kan hældningskoefficient og konstantled aflæses. Overvej hvorfor hældningskoefficienten er den søgte værdi for tyngdeaccelerationen? *Hjælp*: Hvilken sammenhæng mellem hastigheden v og tiden t skal der teoretisk gælde?.
- e) Gentag gerne forsøget for at se, hvor følsomt resultatet er over for, hvordan du slipper Picket Fence.
- f) Gem filen ved i øverste venstre hjørne at klikke på firkanten med "Ingen titel", etc.

Det skal bemærkes, at med de anvendte defaultindstillinger vil sensoren benytte *begge* fotoceller. GA ved, at der er 2 cm mellem de to fotoceller. GA skal da bare måle tiden imellem ankomsten af et sort felt til fotocelle 1 til det samme sorte felt ankommer til fotocelle 2, for at kunne bestemme hastigheden ....

## Alternativt

En anden måde at udføre forsøget på er ved fortælle sensoren, at den kun skal anvende én fotocelle, og så ellers udnytte viden om hvor brede de sorte felter i Picket Fence er. Vi får her brug for et andet redskab i GA, nemlig *Sensoropsætning*:



NB! Hvis du lige har udført målinger med en anden opsætning af sensoren, så er nødt til at lukke GA og åbne det igen!!

- a) Åbn Graphical Analysis Pro
- b) Vælg knappen *Sensoropsætning*. I den fremkomne boks vælges *SENSORKANALER*.
- c) I den nye boks fjernes fluebenet i feltet Objekthastighed. I stedet markeres feltet Gate 2 gate-tilstand. Afslut med Udført.
- d) Tryk på knappen *Opsaml* øverst og slip *Picket Fence* igennem gabet i Photogaten.
- e) Vi har fået en (t,s)-graf. Lad os sige, at vi ønsker en (t,v)-graf i

SENSORKANALER Gate 2 - gate-tilstand [-]
Objekthastighed
Objektacceleration (flere flag)
Gate 1 - gate-tilstand
Gate 2 - gate-tilstand
Laser Gate - gate-tilstand
Remote gate - objekthastighed
Remote gate - objektacceleration
Gate 1/Remote gate - timing
Laser Gate/remote Gate - timing

stedet. Da klikkes på "Distance (m)" på grafens *y*-akse. Derved fremkommer en boks, hvor man indstiller *y*-aksen til hastighed i stedet for distance. Bagefter klikkes et neutralt sted i den øverste grå bar for at lukke boksen.



f) Vælg knappen *Grafværktøjer* og vælg punktet *Kurvetilpasning*. Vælg *Lineær* og tryk på *Anvend*. Derved skulle man gerne have fået foretaget et lineært fit af tid-hastighed data. Hældningskoefficienten er som før en værdi for tyngdeaccelerationen.